
AFRL-SN-RS-TR-1999-233 
Final Technical Report 
October 1999 

■*<y 

ADVANCED SIGNAL PROCESSING ALGORITHM 
EVALUATION 

Integrated Sensors, Inc. 

Milissa Benincasa and Dave Nobles 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

AIR FORCE RESEARCH LABORATORY 
SENSORS DIRECTORATE 
ROME RESEARCH SITE 

ROME, NEW YORK 

tmC QUALITY nWFBOTED 4 19991220 032 



This report has been reviewed by the Air Force Research Laboratory, Information 
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical 
Information Service (NTIS). At NTIS it will be releasable to the general public, 
including foreign nations. 

AFRL-SN-RS-TR-1999-23 3 has been reviewed and is approved for publication. 

APPROVED: 

Russell D. Brown 
Project Engineer 

FOR THE DIRECTOR 

Robert G. Polce, Acting Chief 

Rome Operations Office 

If your address has changed or if you wish to be removed from the Air Force Research 
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by 
your organization, please notify AFRL/SNRT, 26 Electronic Pky, Rome, NY 13441- 
4514. This will assist us in maintaining a current mailing list. 

Do not return copies of this report unless contractual obligations or notices on a specific 
document require that it be returned. 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 

SSSSSSäSSSSSSSSSSiS^S^^^^^ 
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 

OCTOBER 1999 

3. REPORT TYPE AND DATES COVERED 

Dec 94 - Jan 99 

4. TITLE AND SUBTITLE 
ADVANCED SIGNAL PROCESSING ALGORITHM EVALUATION 

6. AUTHOR(S) 

Milissa Bennincasa and Dave Nobles 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Integrated Sensors, Inc. 
502 Court Street Suite 210 
Utica NY 13502 

8. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Air Force Research Laboratory/SNRT 
26 Electronic Pky 
Rome NY 13441-4514 

5. FUNDING NUMBERS 

C - F30602-94-C-0027 
PE- 63762E 
PR- 4506 
TA- SN 
WU-IT 

. PERFORMING ORGANIZATION 
REPORT NUMBER 

N/A 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

AFRL-SN-RS-TR-1999-233 

11. SUPPLEMENTARY NOTES 
Air Force Research Laboratory Project Engineer: Russell D. Brown/SNRT/(315) 330-2661 

12a. DISTRIBUTION AVAILABILITY STATEMENT 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

12b. DISTRIBUTION CODE 

13. ABSTRACT /Maximum 200 words! , 
The primary objective of this program was to develop software for evaluation of radar signal processmg algorithms. 

Real time processing of radar data generally requires parallel computer architectures that present challenging programming 
problems   Under this effort, tools were developed to streamline the transition from concept to processing software required 
to operate in real time. These tools included a Multisense Algorithm Development System (MADE), a parallel processmg 
architecture manager, a configurable interface for AFRL Surveillance Laboratory hardware and software interconnections, 
and a development environment for building applications and tracking performance. Experiments were performed m the 
laboratory to demonstrate radar signal processing and target detection in real time. 

14. SUBJECT TERMS 
Radar Signal Processing, Sensor Capability, Parallel Processing, Rapid Prototyping 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

15. NUMBER OF PAGES 

32 
16. PRICE CODE 

20. LlMlYAf ION OF 
ABSTRACT 

UL 
Standard Form 298 (Rev. 2-89) (EG) 
Presented by ANSIS«. 238.18 
Dtsigned using Pert«m Pro, WHS/DIOR, Oct 94 



TABLE OF CONTENTS 

1 Program Summary and Results 1 

1.1 Background * 
1.2 Program Objectives * 
1.3 Summary of Program Accomplishment 1 

2 Advanced Signal Processing Algorithm Evaluation Program 2 
2.1 Concept Overview 2 

2.2 MADS Environment • 6 

2.3 Radar Signal Processing Application Developed Using MADS 9 

3 Evolution of MADS l0 

3.1 Real-Time Development Environment (RTDE) Concept 10 
3.2 RTDE Components 12 

3.3 RTDE Real-Time Performance Monitoring 14 
3.4 RTDE Enhances MADS Capabilities 15 

4 RTEXPRESS™ Commercialization of RTDE 17 

5 Future Directions i0 

19 6 References  



List of Figures 

Figure 1 Typical Software Development Process Cycle 2 
Figure 2 Modified Software Development Process Cycle -3 
Figure 3 Multisensor Algorithm Development System 4 

Figure 4 Conceptual Organization of the MADS Facility -5 
Figure 5 MADS Environment Components ° 
Figure 6 System Configuration of Typical Experiment ' 
Figure 7 Control and Data Visualization Objects ° 
Figure 8 Radar Signal Processing Application -9 

Figure 9 Dataflow Through MADS ™ 
FigurelOReal-Time Performance Monitoring *2 

 "'""Z"'*"'"" 14 
 17 

Figure 11 Target Balancing Tool 
Figurel2 Real-Time Performance Monitoring  
Figurel3 RTEshot Post-Mortem Instrumentation. 



List of Tables 

Table 1.   Comparison of Program Capabilities 15 

111 



1 Program Summary and Results 

1.1 Background 
The Air Force Research Laboratory Rome Site (AFRL) houses a state-of-the-art Radar 
Surveillance Laboratory (RSL) that can be used to evaluate and develop real-time signal 
processing algorithms. In order to provide better utilization of this facility the need 
existed to integrate the RSL hardware and software components so as to reduce the 
separate setup time required to interconnect the various laboratory equipment. This also 
required a software development tool that would significantly reduce the overall 
algorithm development time for evaluating and implementing the real-time radar signal 
and track processing on the RSL hardware. 

1.2 Program Objectives 
The objective of this effort was to build a Multisensor Algorithm Development System 
(MADS) that would integrate the RSL hardware and software. Part of the MADS concept 
was to provide an interactive environment for developing adaptive signal processing 
algorithms for low observable target detection. MADS was focused on providing the 
following features: 
1. A configurable interface that would allow RSL hardware and software to be 

interconnected. 
2. A software development environment for building real-time signal/track processing 

applications. 
3. A parallel processing architecture manager that would allow the implementation of 

development functions onto existing i860 based processing hardware. 

The MADS environment was to be demonstrated by providing a basic end-to-end radar 
processing algorithm set for baselining performance and daily operation. 

1.3 Summary of Program Accomplishment 
A major accomplishment of the Advanced Signal Processing Algorithm Evaluation 
(ASPAE) program was the development of the MADS software development 
environment. MADS has provided the foundation for a commercially available rapid 
prototyping environment that allows MATLAB® code to be directly executed on 
embedded real-time and non-embedded real-time computing platforms. MADS provided 
the entree into a DARPA/ITO funded research effort that produced the current Integrated 
Sensors, Inc. (ISI) commercial product RTExpress™. 



2   Advanced Signal Processing Algorithm Evaluation Program 

2.1 Concept Overview 
The overall objective of the Advanced Signal Processing Algorithm Evaluation Program 
was to improve, demonstrate, and evaluate adaptive signal processing algorithms for low 
observable target detection. The goal was to develop an efficient algorithm 
implementation facility to easily compare the performance of competing techniques 
relative to processing requirements, false alarm rate, detection capability and track 
formation as a function of signal to clutter ratio. 

ISI's innovative approach was to introduce the concept of directly utilizing MATLAB 
algorithm code on the target signal processing hardware for the implementation of these 
candidate applications. This approach was selected to reduce the software development 
cycle costs associated with developing and debugging adaptive signal processing 
application code. The typical software development process cycle is depicted in figure 1. 

0 as Engineering Concept 
~ Evaluation with 

MATLAB^DL» 
Simulation 

System 
Concept 

Software 
Requirements 

Initial 
Software 

Code 

Simulation 
Results 

Field Data 

Update 
Software 

From 
Simulation 
_ 12 -15 Months 

Desktop 
Testing 

System 
Integration / 
Lab Testing 

Figure 1 Typical Software Development Process Cycle 

The approach presented in figure 1 requires multiple steps to be performed in order to 
move the adaptive signal processing application from concept to implementation. The 
systems engineer designs the adaptive signal processing algorithm in MATLAB . The 
correctness of the algorithm is verified by running simulations. Once the correctness of 
the MATLAB® algorithm implementation has been verified, the algorithm description is 
handed off to the software engineer who then rewrites the algorithm in the appropriate 
programming  language  for  the  target  signal  processing  hardware.  Typically  the 



MATLAB® is rewritten in the C programming language. The C implemented version of 
the algorithm must then be compared to the MATLAB® implementation to insure that it 
provides the same functionality. Once it has been verified that the functionality matches, 
the C implemented algorithm can be executed on the target signal processing hardware. 
The results of the execution on the target signal processing hardware must then be 
compared with the results obtained from running the MATLAB® simulations to verify 
correctness. If inaccuracies are detected between the two versions, modifications must be 
made. This can result in multiple reiterations of the whole process. Constant coordination 
between the systems engineer and the software engineer must exist; if this coordination 
does not occur valuable information is lost. It is often the case that valuable information 
is lost. 
ISI's innovative approach will reduce the typical software development process cycle. 
This modified software development process cycle is depicted in figure 2. 

ays    m      Engineering Concept 
Concept 

0 
Evaluation with 
MATLAB^DL«1  ^ 

Simulation 

/' 
Simulation 

Results 

Directly 
Embed 

Algorithm 
into Target 
Processor 

Field Data 

;;<® 

Test 
Data 

Compare during 
integration 

^RealTirtie 
Embedded 

" HPC 

Real Time 
Field Tests 

System 
Integration / 
Lab Testing 

Figure 2 Modified Software Development Process Cycle 

The original software development process cycle is significantly reduced. The systems 
engineer can still design and develop their adaptive signal processing algorithm in 
MATLAB®, and then test and verify its accuracy in MATLAB®. But the MATLAB 
implementation no longer needs to be rewritten for the target signal processing hardware. 
The MATLAB® implementation can be executed directly on the target signal processing 
hardware. This capability is made possible by using MADS. 



Figure 3 illustrates the MADS approach, where algorithm representation is based on a 
matrix based language well suited to radar signal processing. The MADS system depicted 
in figure 3 provides the capability for a user from their workstation platform, to develop 
radar signal processing algorithms using the MATLAB® language. The user can then 
simulate the performance of the algorithm in the MATLAB® environment. Once the user 
is satisfied with the simulated performance using MADS, the MATLAB® code can be 

PARALLELIZATION 

A 

Algorithm 
Development & 

Evaluation 
Environment 

Matrix-Based 
Standard" J 

:^i'Dätä;>.v;---s^ 
C;interface^ j 
Foundation ; 

Scalable 
i860- 

Based 
Parallel 
Architec 

tu re 

«A te*. 

Sensor 
Control 

& 
Display 

-*SL_—-—-- L-Band 

<M S-Band 
™*s 

. C-Band -^ 

Figure 3 Multisensor Algorithm Development System (MADS) 

mapped onto the i860-based vector processors. MADS will then generate the necessary C 
language code to run the application on the target i860-based vector processor 
architecture. MADS provides the capability to move from desktop development to a 
parallel implementation suitable for real-time multi-sensor experimentation quickly and 

efficiently. 
This MADS concept has resulted in an open-ended test and evaluation environment, 
bypassing the lengthy hand-coding step for a new candidate algorithm. Integral to this 
environment is a graphical user interface designed to easily set up, control, and evaluate a 
variety of experiments. Figure 4 shows the conceptual organization of the MADS 
environment. The user communicates with the MADS environment using a SUN 
workstation terminal. MADS provides both a graphical user interface (GUI) and a 
command line interface (CLI). The GUI interface provides the capability to open both 
display and command line windows, and to build algorithms graphically by linking radar 
function icons. The GUI sits on top of the CLI interface, which translates graphical 



GRAPHICAL USER INTERFACE (GUI) 

COMMAND-LINE INTERFACE (CLI) 

(III) (II) 
(I) 

REAL-TIME 
EXPERIMENT 

FUNCTION 
PROTOTYPING 

i860 Parallel Architecture 

MATLAB 
ALGORITHM 

DEV. and 
EVALUATION 

PACKAGE 

RECORDED 

SUN 

Figure 4 Conceptual Organization of the MADS facility 

commands, stores and saves script files, and offers a quick access capability to a large 
function library. Below the CLI level are three different modes that the user can choose to 
work in. There is a non real-time algorithm development and evaluation mode. In this 
mode the user develops algorithm concepts in MATLAB® then tests the concepts using 
synthetic or stored data. The second mode is called the real-time function prototyping 
mode. In this mode the user takes a set of functions or subfunctions written in 
MATLAB® and maps them directly to execute on the i860 vector based architecture. The 
user is able to evaluate the throughput of portions of the algorithm, identify excessive 
processing loads, and modify or tweak the algorithm. The third and final mode is referred 
to as the real-time experiment mode. In this mode the user evaluates the full algorithm 
chain. The MADS environment provides the capability for live data to be read in, live 
data to be recorded, or synthetic data to be created. 

The MADS hardware architecture testbed consisted of a SKY i860-based vector 
processor and a SUN computer to support real time displays. 

In order to validate and verify the functionality of MADS, various classical radar signal 
processing functions were implemented. These radar signal processing functions were 
later used to develop a multi-sensor real-time detection and tracking experiment utilizing 
the AFRL S-Band and L-Band radars. These were demonstrated in real-time using the 
RSL facility. 



2.2 MADS Environment 

Figure 5 depicts the components of the MADS environment. 

Machine Independent C-Code 

[Bt3 AcquBion m-Tunaora 

Output lnterta« Fund pii 
KjiermiiHinnv 

m-fu net toil = 
suBsnnjps 

CDHttOlS-K) 

REAL-TIME 
Display, 

Contioi.and 
in 

■JT. 

Single Node 
orPlatform 

Non-Real-Time 
SciiptFUe 

Figure 5 MADS Environment Components 

The input to the MADS environment is a MATLAB® adaptive signal processing 
algorithm. Before using MADS, a user must verify that their algorithm runs correctly and 
error-free in the MATLAB® environment. The user can then use the MADS environment 
manual balancing tool to specify how their MATLAB® implementation will be 
partitioned to execute on the target signal processing hardware. The initial 
implementation of MADS supported the SKY i860 vector based processing architecture. 
Once the user has specified the partitioning, MADS then translates the MATLAB code 
to C code. The MADS environment contains a translator based on lexical analysis and 
code generation that parses MATLAB® input code and generates a highly function 
oriented C-program. The translator is based on the GNU tools "flex" and "bison", which 
are the general equivalent of the UNDC tools lex and yacc. The translator supports all 
MATLAB® constructs including implicit looping denoted by the MATLAB® colon ":" 
operator. Complex concepts such as indexing matrices with vectors are also supported. 
Actual MATLAB® operations for both computation and data organization are 
implemented through the use of libraries developed as a part of ASPAE effort. The 
libraries do not support the notion of distributed matrices, since parallelism in MADS is 
realized by the mechanism of round robin data shuffling. A round robin parallelization 
scheme is typically used when the rate of data coming into the system is faster than the 
rate a subset of the processors can process the data. Parallelization is obtained by the fact 
that multiple input data sets are being processed in a staggered fashion simultaneously. 
The C code generated by the MADS translator is then compiled and linked for the target 
signal processing hardware using the vendors C compiler. It is at this point that the 
MADS function library, and the vendor specific libraries are linked in.   The MADS 



function library contains implementations of many of the MATLAB functions. The 
vendor specific libraries contain hand-coded, machine specific vector functions that 
MADS uses to increase performance. The final step is to execute the C code on the target 
signal processing hardware. MADS provides the user with data visualization and control 
of their program. These visualization capabilities help assist the user in determining how 
well their algorithm is performing on the target signal processing hardware. 

Figure 6 is a block diagram of a typical signal processing system configuration 

r~?. Real time processing of live radar returns 

L-Band Demo Display 

Figure 6 System Configuration of Typical Experiment 

experiment in MADS. Data from one or more sensors or recorded data enters the 
SKYBurst interface through a MUX. Data routing software routes the data to a particular 
processor in the SKY multiprocessor. Routing is controlled through a hard-coded 
mechanism and directed by control information specified through the user interface. 

Once on a particular i860, processing is controlled by the translated MATLAB 
algorithm script in real-time. The parallelization paradigm used in this example is a 
round-robin scheme. 



Processing results are reported to the user interface via the VME bus and MADS display. 
Figure 7 presents a collection of the types of control and data visualization objects 
supported by MADS. 

-.-.Xiim PpIntHanafRrv 

SSÜMI OEB» €SEI» ,r..... /^^liD^fe' 
I ■ ■ •s»n^nr.j - |:, stmtfitof.u;-;& , 

fc:?; bit« sWoWj;')-' Mwp»u> fr"«' 

oscopdj* oata,1!^»:.» ->:- ■ 1 sgyr-v*: ■•'.•:: 
"   § fteJ* Imaq ! MagSqr I MagSqrfoe) 

.J%$w«.«!lK-:."^':.,... ...... 

B^'^tr^i 

Radar System Configuration 

Radar System Control   . 

oirrent  "TJO'SH-W"' löbu Control' 
Number Of Sensors 

Slg. Proc iseo's 
Trk Proc 
MUK PRF 
MUK Readout Rate 

MUX Nun Rng Bin : 
MUX Data Start Bin 

JaveJ   loadl File: 

-' Update Constants ;' 

4        \ i^U 
4        4,„.',liZi 

TRUE jff Enabled 

SHIS 

340 -to 

:   500000 
:      1471 

500000 , 

1471 '• 

:        14 ASM» 
liiisiiiii 

■ Process I Standby 

Data Source 

I Radar   Synthetic I 

Signal Processing Code 

fc~ Matlab [ 

Filg rr«tlK 

Sensor Number 0^   t , 
Current j 

sensor Tyoe: S;-Ba.nd  ' 

«MOOOO j 

i«705- j 

W j 
■5 

.' (sex 

o 
51S.! 

P-jit;^ Tlivr. = t::ii*l 

,| ;    •    Reset To Currt 

Desired Current! 

r| s-Baricf. ■. Dodder Bins:    -ie 

Ö0000_0; Bins to Process :       256* 

. Start Range Bin :       too j 

PCFFTSlie:       512< 

PC Taper: TRUE.  •] 
Doppler Taper: fAlSE ■ • 

Cnd Map Extent: '      0 

:   CFARWindow:   :    .5   I 

.. CFARCuard:     '1 

'.   Mln Threshold: '■ 

. ;.: ■      PFA Scale':; 2.S    -:. ] 
iDoppler Slainklng::fAISE.*. 

MTi 1st Weight: O.5.." 

iflOOOOOO 

3.28-05 

0    A 
0 1 
iligsf 

■" 512. 

|3-.Puts«' MTI.2nd Wehjht: -1.;.1 

nt Settings 
f Öes Ired 

g^256VT 

iBllil 
_'i12 

ttSDIIBil 
F*I5F      2 

2.5_;J 

FA-IE 
\<3£ .' J 

Figure 7 Control and Data Visualization Objects 

The MADS visualization interface includes process control, status monitoring, 
configuration windows, tap point selection, real-time displays, and textual detection lists. 
A multitude of radar input and processing parameters can be set so that processing power 
can be brought to bear on the data segments of interest. Tap-points can be used to select 
predefined signal processing data objects to instrument for visualization. O-scopes can be 



created and mapped to tap point data for a real-time oscilloscope representation of data. 
In a similar manner a Plan Position Indicator (PPI) display can be utilized to visualize 
detection and track data. The PPI display contains grey scale for aging detections, 
azimuth indicator dot, and azimuth range read out. For a truth reference and to identify 
targets of opportunity, live JSS feeds are supported. 

2.3 Radar Signal Processing Application Developed Using MADS 
Figure 8 presents a radar signal processing application that was developed using MADS 
and MATLAB®.  By using this approach the  application development time was 

2Mtt!lfl 
LBand 
Radar Data 

,4 
MTI 

Pulse 
Compression FFT CFAR 

«■"«.f^iss&i'tf'i' 

:^*^>iiii>."v^^»KK 

xiufi # ?.. !]■ >^Ztir9*. '„ 

8 Pulse Can«j!£f Tino Transform Method Comertum 16 liters x 512 range bins 
512 pt FFTA512 pt ißST Hamming weights Aiapthre fcjfc&SlfeS 

16 pt FFT x 512 range bins 
Magnitude 

Live Raw Radar Return (real part) on Qs&ps Display 

Measured Performance Comparisons 

Sun* i860 i860 
Spade 1 + 1 node tnode 
MATLAB Hand Coded C Translated 

PC 2.06 s 0.02  s 0.023 s 

FFT 2.55 s 0.009 s 0.029 s 
CFAR 3.03 s 0.013 s 0.208 s 
Total 7.64 s 0.042 s 0.26  s 

Real Time Radar OKÜWÖWSon PPI Dsplay 

Figure 8 Radar Signal Processing Application 

significantly reduced due to the fact that once the application was developed using 
MATLAB® it could be directly executed on the target signal processing hardware. The 
time saved is a result of not having to rewrite the MATLAB® implementation in another 
language. 
In this application, radar signal processing application consists of four functions. The 
functions include Moving Target Indicator (MTI), Pulse Compression, Fast Fourier 
Transform (FFT), and Continuous False Alarm Rate (CFAR). The MTI function is a six 
pulse digital filter designed to suppress the mainlobe clutter. The pulse compression 
function performs the matched filtering necessary to compress a long pulse to a duration 
that is inversely proportional to the bandwidth. The FFT function performs the Doppler 
processing allowing moving target discrimination. The CFAR processor function adjusts 
detection threshold levels as a function of the local range-Doppler cell energy content to 
preserve the false alarm rate at some predetermined value. The input data is raw I and Q, 
L band sensor data. This data was read in from an L band sensor at AFRL as it was 
functioning. Figure 8 displays the results of multiple executions of the radar signal 
processing application. Three different results are provided for comparison. The three 



different results are for the following: the radar signal processing application written in 
MATLAB® and executed in the MATLAB® environment, a hand-coded C 
implementation, and the MATLAB® implementation translated using MADS The initial 
tests show that performance efficiencies of 40% to 87% of hand coded C can be obtained 
using MADS depending upon the function. The dataflow process through the MADS 
system used for building the radar signal processing application is depicted in figure 10. 

EX «TING 
FUNCTION I 

AT RUF 

Figure  9 Dataflow Through MADS 

The MATLAB® rapid prototyping concept innovated in MADS under the ASPAE 
program proved so effective that follow-on DARPA sponsorship was obtained for further 
research. The following section describes the evolution of the MADS concept. 

3 Evolution of MADS 
The MADS environment under the ASPAE program formed the foundation for the 
follow-on DARPA/ITO funded program entitled "Real-Time Development Environment 
(RTDE)". 

3.1 Real-Time Development Environment (RTDE) Concept 
The objective of the RTDE program was to develop a rapid prototyping environment that 
would provide a complete facility for a systems engineers to take algorithms written in 
MATLAB® and automatically generate executable parallel code suitable for embedded 
real-time execution and data analysis on parallel high performance computers. The 
RTDE significantly extended the existing MADS environment. The extensions include 
the following: 

1.   A parallel MATLAB® function library 

10 



2. Support for multiple parallelization paradigms including round robin, task parallel, 
data parallel, pipelined 

3. Automatic generation of parallel C code 

4. Execution on multiple real-time embedded platforms 

5. Transparent automatic data distribution 

6. Real-time performance visualization. 

The RTDE incorporated five key features. These five key features are a translator for 
parallel code generation, standard message passing library, real-time support, parallel 
algorithm decomposition, and performance visualization. The translator converts 
MATLAB® source to C code and features the use of standard optimized mathematical 
library calls. A standard message-passing library is utilized to support the distributed 
aspect of a scalable implementation. Support is included to address real-time issues such 
as interrupts, data buffering and queuing, throughput, bandwidth, and latency. Semantics 
are provided for dealing with I/O data streams over standard interfaces. Parallel 
implementation of the overall algorithm is supported through user specified domain 
decomposition, functional decomposition, or a hybrid solution, as well as parallel 
libraries for functions within the application. Performance visualization is included to 
support test, integration, and evaluation. 

The RTDE provides a toolbox of machine-independent, real-time utilities that the user 
can embed in a MATLAB® file to configure data flow, display, and control. A graphical 
Target Balancing Tool (tbt) allows the user to perform load balancing with manual 
allocation of MATLAB® processes to physical hardware nodes. The MATLAB® file is 
then translated to parallelize the functions to produce parallel C code that is machine- 
independent. Once the parallel C code is produced, the user can compile and link it for 
any of the supported target platforms. RTDE provides wrappers around third party 
libraries, which map script file function calls to the target library. The result of the 
compile and link stage is a set of real-time executable processes that acquire data from a 
continuous real-time data stream and distribute it across the platform's nodes, process the 
MATLAB® algorithm, and combine and output continuous data in real time. During 
execution, the user can monitor real-time displays that are created by the real-time 
toolbox functions, reconfigure user selected parameters, and observe throughput and 
loading performance. The RTDE functional tools are fully integrated to provide a 
seamless environment for all of the development needs of an embedded real-time system. 

11 



3.2 RTDE Components 
Figure 9 depicts the physical components that comprise RTDE. RTDE consists of a 
workstation referred to as the HOST PC, which is utilized to interface with the target high 
performance computer. The HOST PC is used to create, compile, and link the parallelized 
C-code generated by RTDE. Like the MADS environment the input to the RTDE is a 
sequential MATLAB® m-file. 

J 
Singe Node 
or Phtform 

NayReaLTime 
ScnptRle 

Parallel C-Code Generator 7^ 
Third Party 

i lies 

Matlab Script 

sgiMunctpit", 

:*:Cortiol RK5; 

»Performance 
Vtsua lotion 

Data 
Vfeiufzition, 

Control, 
Debug 

W .bb*Äip»,ani) 

Real-Time Toolbox 

Growth 
IBMSP2 

Non- 
Dtwlopituntsl 

■      Its mi  

lllDtvtloptdtOr 
"Rom» LsbHMRPA 

Figure 10 Real-Time Development Environment 

The next component in RTDE is the target balancing tool (tbt). This component did not 
exist in the MADS environment. Tbt is used to modify the MATLAB m-file, partition 
the m-file into groups and instances of groups, and specify the compile and run-time 
parameters for the selected embedded real-time high performance computer A group in 
RTDE is defined as a set of tasks (comprised of MATLAB® scripts and functions) which 
are processed sequentially by each node of a user-specified set, or refers to the set of 
nodes dedicated to the tasks of the group. All the nodes withm a group perform thej>ame 
tasks in unison on different portions of the data. The output from the tbt is modified 
MATLAB® files. A sample of the tbt tool is depicted in figure 11. 
The RTDE translator then processes the modified MATLAB® m-file. The translator that 
was used in MADS has been replaced by a three step translation process. The three-step 
translation process consists of: preprocessing, Mathworks Compiler, and post processing. 

12 



MATLAB script text editor 

Color ceded display 
MATLAB functions 
Comments 
Real-time Toolbox functions 
Unsupported functions 

rafflet Italantlnfl Too! 
£t1*   £*IU   t*»rrlv  Fnifisrur^rr   JkuW 

spplii - iji:-:r*i'o!!ct, '«vie", 'patttvttoir', 'string', 'apjly', 'pwiln 
W.W - j!:tj"-'nlHct,   'stjV,  'lMip«t<i-i')   >IM*J',  "MfKI',   '|l»5*tlt>!>' 

-IM-!» <l.i 

3.:?(fr,)U, ''.'Slat') i= 1 

if >vt<>*ä Hep *>< i. j ij > "c'k 

ntirl i «rr; 

ttyir r&pef)l 
pSst<!iM(pc(:.l)l,V>: 

tpc i te's 

hitr? -f*'t; 

tf ö!>p**1ghting "= 5; 

;::l:;.,:,J-,,'=..- -J;.....-i   ^ 

Figure 11 Target Balancing Tool 

Codetfc 
altocatedto 

group 

Code User 
allocatedto 

group 

The preprocessing step is first performed on the m-file in order to prevent the Mathworks 
compiler from generating C code that will not parallelize well. Once the preprocessing of 
the m-file is complete, the m-file is translated to C code by the MATHWORKS compiler. 
This C code is then post processed. The post-processing step is required in order to 
incorporate support for single or double precision data types. MATLAB only supports 
double precision data types, but RTDE supports both single and double precision data 
types. The user can specify whether they want single or double precision data using the 
tbt configuration control dialog. 

Once the MATLAB® has been translated, the parallel C code is compiled and linked for 
the selected embedded real-time high performance computer. It is at this point that the 
RTDE parallel function library, message passing interface (MPI) library, third party 
libraries, and the vendor specific libraries are linked in. The RTDE parallel function 
library enhances and extends the function library that was developed in MADS by 
providing parallel implementations of the supported MATLAB® functions. For example, 
the parallel function library provides parallel implementations of functions such as FFT, 
and IFFT. The MPI library is linked in because RTDE uses MPI for providing 
communication between nodes on the real-time embedded parallel architectures. MPI 
was selected because it provides portability for RTDE across the supported parallel 
architectures. Third party libraries, for example ScaLAPACK, were utilized for the linear 
algebra parallel functions like eigenvalue, matrix inverse, QR reduction, and matrix 

13 



divide. The vendor specific libraries contain hand-coded machine specific vector 
functions that RTDE like MADS used to increase performance. 

Once the parallel C code has been compiled and linked it can then be executed on the 
selected embedded real-time parallel architecture. RTDE Like MADS, RTDE provides 
data visualization/control of the application, but RTDE extends the real-time 
visualization capabilities of MADS by providing real-time performance monitoring. 
These visualization capabilities provide the user with feedback on how well their 
algorithm is performing on the selected hardware platform. RTDE added hardware 
architecture support for the Mercury Raceway i860 embedded real-time parallel 
architecture and the Intel Paragon i860 parallel architecture. 

33 RTDE Real-Time Performance Monitoring 
RTDE extended the MADS program execution visualization capabilities by providing a 
built-in display for parallelization performance statistics. Figure 12 provides a sample of 
the RTDE real-time performance monitor. The real-time performance monitor depicted in 

•    ri Performance Data 
'•"^■^^^V-fS^f^^ • 

Group tot Iteration Period Careputfc Groups GUI Import Export Heap Pool   Matrix 

00 ftf» 000873   012.66   OOSJä        028«   0C82   000* um 27SS04 0 4M 

•     0L m 000872   012.67   0482        027Ä   0O43C   008£ 014« 3S3544 0 469        ;- 

02 m O00S71   012,84   0233        0532   0032   01« 011Ä 245352 0 43?        „: 

03 m O0Q217   051,10   0352        033&   0O15J   030% 0002 644888 0 337 

03 0T 000217   051,12   0352        0332   001X   030% 0ÖO3! 644888 0 397        =; 

'.     C8 OP 000217   051,25   035X        0332   0013t   030JJ 0002 644883 0 397               ;. 

03    03 

Close   j 

000217   051.31   0352        0332   001Z   O30S 000% 

-I L09 

644888 

RTEzpross 

0 

events 

397 

Figure 12 Real-Time Performance Monitoring 

figure 11 provides information for each group (task) specified in the application program. 
In order to active the performance monitor for an application, the user must specify the 
portion of code that they wish to monitor. This is accomplished by using the real-time 
toolbox commands itertop and iterbot. The itertop command is placed above the first line 
of code where the monitoring is to begin. The iterbot command is placed after the last 
line of code to be monitored. For each group the following information is provided: 

1. Group: The functional group number. 

2. Inst: The instance number within the group (task). 

3. Iteration: The number of times a designated code segment has been executed. 
4. Period: The average CPU time spent within a designated code segment. 

5. Compute: The percentage of time spent to compute the last iteration. 

6. GroupMsg:   The percentage of time spent on communication within the functional 
group. 

14 



7. GUI: The percentage of time spent of GUI data. 

8. Import: The percentage of time spent getting/waiting to receive data. 

9. Export: The percentage of tie spent sending/waiting to send data. 

10. Heap: The size of the heap at the end of a designated code segment. 

11. Pool: The number of buffers being used from a user defined static buffer pool. 

12. Matrix: The number of active matrices at the end of a designated code segment. 

3.4 RTDE Enhances MADS Capabilities 
The DARPA/ITO funded RTDE program significantly extended the capabilities of the 
MADS environment developed under ASPAE. Table 1 presents a detailed description of 
the differences between the MADS environment and RTDE. 

Table 1 - Comparison of Progr. am Capabilities 

Prog jram 
Capability 

MADS RTDE 

General Goal Provides a rapid Provides a portable 
algorithm prototyping streamlined facility for 
facility based on efficient direct 
MATLAB® and implementation of 
optimized for MATLAB® signal and 
advanced radar signal image processing 
processing on a Sky algorithms on real- 
processor with a time embedded 
specific interface. parallel computing 

systems. 

Parallelization Round-Robin Round-Robin 
Paradigm(s) Data Parallel 

Task Parallel 

Pipelined 

Combinations of 
Methods 

Processor Sky i860 Shamrock Intel Paragon 
Target Mercury i860 

RACEWay 

Underlying Native Sky API MPI 
Messaging 

Portability Very limited General 

Application Interactive Interactive 

15 



Steering 

Data Type 
Support 

MATLAB^/C 
Translation 

checkboxes, text edit 
boxes, and buttons. 

float (32-bit) 

MATLAB 
Capability 

w 

Real-Time 
Constraints 

Displays 

Data 
Manipulation 

Input/Output 

Software 
Testing 

Vector 
Acceleration 

Performance 
Visualization - 

In-house designed 
translator utilizing 
Flex and Bison 

Tailored specifically 
to radar signal 
processing 

Data and throughput 
driven 

Single plot, gray 
scale image, PPI, 
fixed size output. 

Single node general 
Matlab 4.x matrix 
manipulation 
capability 

SKYBurst Input 

Functional testing 
based on test 
application end- 
results. 

Sky i860 library 

None 

checkboxes, text edit 
boxes, and buttons. 

float (32-bit) or 
double(64-bit) but not 
both simultaneously 

In-house designed 
translator utilizing 
Flex and Bison, 
Mathworks 
MATLAB®-to-C 
translator, C-based 
post processor 

MADS capability 
extended to support a 
broader range of 
signal and image 
processing 
capabilities, including 
matrix factorization 
and inversion based on 
third-party libraries 

Data and throughput 
driven 

Single plot, gray scale 
image, PPI, fixed size 
output. 

Data parallel general 
Matlab 4.x matrix 
manipulation 
capability 

RINT, HIPPI 

Individual functional 
testing with regression 
capability. Higher 
level testing based on 
demo suite. 

Paragon Kuck and 
Associates 
Accelerated library 

Mercury SAL 

Group/Instance 
summary7 text display 

16 



Visualization 

Graphical 
support for 
user specified 
coarse grained 
parallelism 

None 

summary text display 
at run-time 

Target Balancing Tool 
(TBT) 

Table 1 - Comparison of Program Capabilities 

4   RTExpress™ Commercialization of RTDE 
At the conclusion of the DARPA/ITO funded RTDE effort in 1997, ISI launched an 
internal development effort to provide a commercial implementation of the RTDE 
environment. The commercial implementation of RTDE referred to as RTExpress™ 
officially began selling in July 1998. RTExpress™ currently has many government, 
commercial, and university customers, and its user list continues to grow. 

RTExpress™ also continues to grow as a product by adding new features and capabilities. 
In the architecture area, the RTExpress™ environment currently supports a wide variety 
of both embedded real-time and non-embedded real-time parallel architectures. The 
current supported architectures include: Mercury Raceway (PowerPC), CSPI (PowerPC), 
Intel Paragon, IBM SP2, Sun Enterprise, Network of Sun Workstations, Network of 
Linux PC's. In the future the SKY and SGI Origin 2000 architectures will be added. 

RTExpress™ also includes additional visualization capabilities. One such new capability 
is a post-mortem instrumentation tool. This tool allows a user to instrument the execution 
of their MATLAB® program on the selected target architecture. It provides the user with 
a detailed presentation of their program execution. Figure 13 provides an example of the 
post-mortem visualization capability provided in RTExpress™. 

OllCTl|iraaB«imqMKgBI 

Figure 13 RTEshot Post-Mortem Instrumentation 

17 



5   Future Directions 
The initial MADS environment concept will continue to grow both commercially as 
RTExpress™ and from a research direction under current DARPA/ITO funding. Under 
DARPA/ITO funding, research is currently being conducted to provide a Heterogeneous 
Real-Time Development Environment (H-RTExpress). 

H-RTExpress will provide enabling technology to quickly and effectively move systems 
targeted for heterogeneous architectures from concept to implementation. An important 
part of such a tool is the optimization of the hardware selected to meet specific algorithm 
requirements, and optimal/portable, mapping of the algorithm onto that hardware. The 
tool suite will address the rapid changes in hardware which tend to quickly obsolete 
systems that do not include portable software, and thus lead to large software 
reinvestments. 

The objective of H-RTExpress is to develop an integrated software development 
environment for heterogeneous systems. H-RTExpress will provide the following 

features: 

• An integrated graphical user interface (GUI) environment for end-to-end application 
development on heterogeneous processor architectures in the system engineering 
domain. 

• Techniques and notation for specifying variable data precision in conjunction with 
MATLAB® algorithm description. 

.    Methods for mapping MATLAB® code segments onto heterogeneous processing 
nodes consisting of both embedded and adaptive computing hardware (Field 
Programmable Gate Array Technology). 

• Methods for launching applications across heterogeneous processor architectures 

18 



6   References 
[1] MATLAB® Reference Guide. The Mathworks, Inc., Natick, MA, 1992. 

[2] W Gropp, E. Lusk, A. Skjellum. Using MPI: Portable Parallel Programming with the 
Message Passing Interface. The MIT Press, Cambridge, MA 1994. 

[3] M. Benincasa, R. Besler, D. Brassaw, R. Köhler. Rapid Development of Real-Time 
Systems Using RTExpress™. Proceedings of the 1998 IPPS/SPDP Symposium, pp. 594- 
599, April 1998. 

[4] The RTExpress™ User's Guide. Integrated Sensors, Inc., Utica, NY,. 1998. 

[5] M. Benincasa, R. Besler, D. Brassaw, J. Steill. RTExpress™ A Rapid Prototyping 
Environment for Real-Time Embedded Systems. Proceedings of the MIT Lincoln 
Laboratory HPEC Conference, Sept. 1998. 

19 


